A novel alternate secretory pathway for the export of Plasmodium proteins into the host erythrocyte.

نویسندگان

  • M F Wiser
  • H N Lanners
  • R A Bafford
  • J M Favaloro
چکیده

The malarial parasite dramatically alters its host cell by exporting and targeting proteins to specific locations within the erythrocyte. Little is known about the mechanisms by which the parasite is able to carry out this extraparasite transport. The fungal metabolite brefeldin A (BFA) has been used to study the secretory pathway in eukaryotes. BFA treatment of infected erythrocytes inhibits protein export and results in the accumulation of exported Plasmodium proteins into a compartment that is at the parasite periphery. Parasite proteins that are normally localized to the erythrocyte membrane, to nonmembrane bound inclusions in the erythrocyte cytoplasm, or to the parasitophorous vacuolar membrane accumulate in this BFA-induced compartment. A single BFA-induced compartment is detected per parasite and the various exported proteins colocalize to this compartment regardless of their final destinations. Parasite membrane proteins do not accumulate in this novel compartment, but accumulate in the endoplasmic reticulum (ER), suggesting that the parasite has two secretory pathways. This alternate secretory pathway is established immediately after merozoite invasion and at least some dense granule proteins also use the alternate pathway. The BFA-induced compartment exhibits properties that are similar to the ER, but it is clearly distinct from the ER. We propose to call this new organelle the secondary ER of apicomplexa. This ER-like organelle is an early, if not the first, step in the export of Plasmodium proteins into the host erythrocyte.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative secretory pathway in Plasmodium: more questions than answers.

The malaria parasite extensively modifies the host erythrocyte. Many of these modifications are mediated by proteins exported from the parasite and targeted to specific locations within the infected erythrocyte. However, little is known about how the parasite targets proteins to specific locations beyond its own plasma membrane. Treatment of infected erythrocytes with brefeldin A results in the...

متن کامل

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

Trafficking determinants for PfEMP3 export and assembly under the Plasmodium falciparum-infected red blood cell membrane.

During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the vasculature. Knob formation on the surfa...

متن کامل

N-terminal processing of proteins exported by malaria parasites.

Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and Pf...

متن کامل

The Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen

Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 17  شماره 

صفحات  -

تاریخ انتشار 1997